
* ~.uR -86-4336

TITLE:IMPLEMENTINGREMOTEPROCEDURECALLSWITH DECNET

AUTHOR(S) E. Bjorklund and S. C. Schaller

SUBMITTED TO: DECUS
DECUS
April

Refereed Pa era
fSpring Meet ng,

27-MY 1, 1987

LA-UR--86-4336

DE87 003754

DWCLAIMER

wmsprcpcrod M nn tiur)urrt of wrrrk mprrmord by mnqerrcy nr (he Unital SImIa
f hwcrrrrncnt, Nci!hcr the t Jrrikrl SIUICS(iuvcrnmcnt nor nny qency Ihereaf, nor nny d their

cn)pl,)yccs, muk wny wnrrun[y, c~prcw nr impliul. or unaumc~●ry Iegd Ii#hilily or rcrnpmsi.
hilily (or !hc nucurwy, compklencw, or usefulncm or Wry informmliorr, mppcrhlu%prf~u~l. [)r
pr(~cj~ dIwlIN4 (Jr rcprcsenis IIIUI il~ IMC would rrul infringe privnlely ,)wncd rimht$ kctcr-

encw hcrcm b) uny spcuili~ cwrmcrcud pr~dud, pr~xcw, or lcrvicc hy Irdc nnme, I:mlcmurh,
munufndurcr, m dhcrwise clum noi I)cccwarily comlilulc m imply I:! cmltmcmcn~, rcwm.
mcnthtlllm, ur fwurm~ hy ihc Ilnikrl SIIIIrW (hwcrnmcm m ;my ;IMcncy ihcrcof “I”hcviews
A qrinmm IJf nulhm cmprcwcdhcrcln do nl)l ncccswrlly \Imc or rcllcd Ihnu III Ihr
lJni[crl SIUIM (hrvcrnmcrr! or wry uucrmy Ihcrcof.

Byeecoplancc d Ihle WUCIC,Iho @Yleher rw~icoc U!el IM IJ,O Oovunmenl mmmo● normchmrve,mytily.frwkonee w publleh w roproduco
M Dubllshodlam d Inrs Conlflmmon, w !0 Mow MWo IO do CO,fm U 0 ~mnon! Ouruoece

TIM Los Memos NSIIW!SI LsEofaWV r~usslm Ihel IM puMehe? I#errWy Yhle ●rtreleao work performed under W mmgtoa d Iha U M Dopm’lmonlof Wte?Oy

LosAllamilos
Mlsw

LosAlamos National Laboratory
lmsAlamos,New Mexico 87545

./

UI 1111,,1)1!1‘:, .il l:, Ill; llli,;’:

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

IMPLEMENTING REMOTE PROCEDURE CALLS,-
WITH D-ET*

By
Eric Bjorklund and Stuart C. Schaller

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

The “Remote Procedure Call” (RPC) has recently become an

important communication model for distributed systems. The ba6ic idea

behind remote procedure calls is that a proce66 running on one machine

can “call”, using 6tandard procedure calling 6emantic6, another

routine that executes on a different machine. A mes6age-pa6sing

mechani6m i6 u6ed tO tranSfer parameter6

called routine.

In thi6 paper, we describe a remote

between the caller and the

procedure call sy6tem we have

implemented that uses DECnet a6 the underlying message-pas6ing

mechanism. Our 6y6tem 16 highly reliable, reasonably efficient, and

supports some advanced features such as asynchronous remote

procedures. The described syctem is currently part of a distribut~d

accelerator-control system containing VMS, Micro-VMS, and VAXELN

nodes. It could also be extended to any other system that supports

DECne t. Topics discussed include the system design, pararaeter-pa~~ing

pr-:ocol, error detection and recovery, and performance.

1 INTROIXJCTION

The principal advantage of using remote procedure calls (RPC) for ,

inter-process communication is the simplicity of the concept. Tho

procedure call is a well understo~d mechanism and a useful tool for

* Work supported by the US Department of Energy

IMPLEMENTING REMOTE PR1..JEDURECALLS WITH DECNET Page 2

dealing with abstraction. Remote procedure calls have been

implemented in several distributed systemfisuch as the Xerox :edar

project [2] [5] and the University of Washington’a Eden project [1].

In addition, any distributed system written in the AdaTM programming

language might also be considered an RPC system since the semantics of

the Ada “Rendezvous” [4] are very similar to those of a remote

procedure call.

1.1 Goals Of The LAMPF RPC System

The RPC system described in this paper was designed to support a

distributed control system for the 800-MeV linear accelerator at the

Los Alamos Meson Physics Facility (LAMPF). The LAMPF control system

uses a VAX 780 as the central control computer, another VAX 780 as a

‘-.vel~pmentcomputer and backup control computer, and several.,

Micro-VAX 11 computers for various specialized tasks. Most of the

computers in the system are connected via Ethernet. The two 780’s run

VMs, The Micro-VJWs run either Micro-VMS or VAXELN. Our system had

to meet

o The

was

O The

the following criteria:

system must be easy to use (the whole point of an RPC system

to simplify inter-process communication).

system should be easy to implement. Since the system must be

implemented on two different operating systems, that task should

not be made any more difficult than necessary. Unfortunately,

software at the level of an RPC interface does not lend itself.

well to transportability. The next best thing was to keep the

number of lines of code to a ❑inimum.

o The system must support processes that are written in different

languages, that run under different operating systems, and

communicate over different media. In addition to beinq able to

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 3

communicate across a network, the system should also support

communication between processes residing on the same node.

o Speed is not of the essence (but...). Most of the time-critical

functions in our control system are performed by dedicated

hardware, or by moderately dedicated remote computers. Still, the

system should not be so slow that it exceeds the operator

frustration threshold.

1.2 Design Decisions

Given the constraints mentioned in the previous section, we made

some design decisions that differ from many of the other currently

implemented RPC systems. NO of these decisions were: 1) to support

both synchronous and asynchronous procedure calls, and 2) to use

DECnet rather than design our own communications protocol.

1.3 The Use Of DECnet

Many RPC systems implement their own communications protocol.

The reason for this is that the RPC model is simple enough that a

specialized communications protocol can be faster and more efficient

than a more general message-passing system such as DECnet. This is

especially true in a homogeneous system where there is only one

communications medium, one processor type, aridone operatiilgsystam.

Given the heterogeneity of our network and the

interface easy to implement, we decided to let

communications problems of message delivery,

and error retries.

2 THE STRUCTURE OF THE RPC INTERFACE—— —

The RPC interface is divided Into

desire to keep the RPC

DECnek handle the ba~ic

routing, checksumming,

two parts, a “Caller’a

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 4

Interface” and a ‘Server’s Interface”. Figure 1 illustrates the

structure of the RPC interface for the case where the caller is on a

VMS node and the server is on a VAXELN node (one of the more common

cases in our control system).

SERVER-S
CALLER’S NODE NODE

I

OlltpuiVahn

I
I
I

Figure 1
RPC System Structure

2.1 The (Xller’s Interface

On the caller’s node, the calling process is linked to a stub

routine which has the same name and the same set of parameters as the

remote procedure. The stub routine passes its parameters, along with

some additional information, to the RPC interface rouLine,

RPC_REMOTE_CALL. RPC_REMOTE_CALL packs the parameters into a call

message and sends the call message over the network to the server

process. If the call is synchronous, the calling process is blocked

until the remote procedure completes. If the call is asynchronous~

control is returned to the caller, and when the remote procedure

completes the AST routinn (RPC REPLY AST) will execute.

IMPI,EMENTINGREMOTE PROCEDURE CALLS WITH DECNET Page 5

When the remote procedure completes, the server’s RPC interface

sends a “reply message” back to the caller. The reply message is read

by RPC_REMOTE_CALL (for synchronous calls) or RPC_REPLY_AST (for

asynchronous calls) and is passed to the routine, RPC_PROC_REPLY.

RPC PROC REPLY unpacks the reply message and writes the values of the.-

output parameters into their variables.

2.2 The Server Process

Procedures are not usually stand-alone entities -- they are

generally contained within some environment such as a process or an

operating system. in our system, remote procedures are contained

within special processes called “server processes”. As the name

implies, a ‘server process” provides a service, such as analyzing data

or controlling a device. It also provides a set of remote procedures

that access this service.

The job of

determine which

that procedure,

a server process is

procedure should be

along with the call

to listen for call messageb,

invoked, and pass the address

message, to the server’s RPC

interface routine, RPC_CALL_ROUTINE. RPC_CALL_ROUTINE re-creates

of

the

argument li6t fcom the call me6sage and then calls the specified

procedure. When the procedure returns, RPC_CALL_ROUTINE packs the

output parameters into a reply message which it then cend6 back to the

caller proce66.

3 ASYNCHRONOUS REMOTE PROCEDURE CALLS

Some RPC systems oupport asynchronous remote procedure calls

while other sy6tems only support synchronous calls. Whether or not

asynchronous cells are necessary seems to depend on how well the

operating systew supports local concurrency [3] (allowing a singie

task to have multiple threads of control). VAXELN provides good

lI$lrldJmN’KINls Lim’lwltir~uukm.m~ UUdA W1’1’tlI.)ECNL’1’ rage b

support for local concurrency. We decided, however, that we needed to

support asynchronous remote procedure calls on VMS nodes.

One of the problems with asynchronous procedures is knowing when

the procedure has completed. There are several methoas a program may

use to accomplish this. It can poll one of the procedure’s output

variables to see if it has been written yet, or it can wait on some

event or semaphore that is signaled by the procedure. Some systems

also allow for a special interrupt routine to be invoked when an

asynchronous activity completes.

Our RPC system provides all three of the above methods (depending

on the operating system]. On a VMS or Micro-VMS node, the caller can

poll an output variable, wait for an event flag, schedule an AST, or

any combination of these three.

Sometimes the caller does not care when, or even if, the remote

procedure completes. In this case, the call can be a “No-Reply” call

and the remote procedure will execute independently of the cal~ing

process. The server’s RPC interface will not send back a reply

message when the procedure completes. No-reply calls should therefore

not be made to procedures with output or modified parameters.

As might be expected, synchronous calls comprise the majority of

the remote procedure calls in our control system. Asynchronous and

no-r~ply ctillsare generally used only when increased performance is

required.

4 PROCEDURE BINDING.—

Traditional procedures are normally bound to their callers at

either compile or link time. Remote procedures, however, must

generally ba bound at run time. Three things are required to bind a

caller to a remote procedure in our system: the name of the server

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 7

process, the name of the node the server process is running on, and

the name of the procedure to call.

The node and server names are used to create a DECnet “logical

link” between the calling process and the server process. The

procedure name is translated into a “procedure ID” and sent to the

server process in the call message. Procedure ID numbers need only

unique within a server. By convention, procedure ID zero i6 always

the 19 of the diagnostic echo routine (RPC_ECHO) provided by the

server’s RPC interface.
r

be

Whenever possible, all binding information 6houid be provided by

the stub routine. Sometimes, however, part of the binding information

must be supplied by the caller. For example, if the same service is

available on more than one node, the node name must be provided by the

caller. The diagnostic echo routine, RPC-_ECHO,is available on every

server on every node. Consequently both the node name and the server

name must be supplied by the caller.

5 ~METER PASSING

The caller’s RPC interface uses the argument list passed to the

stub routine to construct the call message. The argument list alone,

however, is not sufficient. The RPC interface must also know how to

interpret each of the arguments. The interpretation of the argument

list is provided by a data structure called the “Parameter Descriptor

Block” (PDB) which is supplied by the stub. The PDB contains a

four-byte entry for each argument. Each entry describes the

parameter’s type, its call~ng mechanism, and its length. The format

of a ~’DBentry is shown below in figure 2,

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 8

[Length I Type Mech. I

2 ‘1, o

Figure 2
Format of Parameter Descriptor Block Entry

5.1 Calling Mechanism

The first byte of the PDB entry describes how the parameter is

passed. The RPC interface recognizes five different mechanisms: pass

by value, pass by reference, pass by descriptor, function return, and

absent.

The RPC interface automatically detects

flags them as such in the call message. The

missing parameters and

stub routine can also

unilaterally flag a parameter absent by declaring it absent in the

PDB. For example, a remote procedure may require a “node-name”

parameter in order to bind the call tb the correct node. Usually,

however, the node-name parameter is used only by the RPC interface and

not by the procedure itself. In this case, the stub routine would

mark the node-name parameter absent in the PDB, and the RPC interface

would not incur the overhead of sending an unused parameter across the

network.

A “Function Return” PDB entry does not correspond to any

parameter in the argument list. Its presence indicates that the

procedure is a function and will return a function value.

5.2 Parameter Types

The RPC ihterface not only needs to know the calling mechanism of

a parameter, it also needs t~ know something about how that parameter

is used. The second byt~ of a PDB entry gives the parameter type.

There are seven parameter type6: input, output, modified, status,

A status parameter is a special case of an output parameter. The

way the RPC interface detects and reports errors requires that it know

which parameters contain status codes (see section 7). Status

parameters are always passed to the remote procedure, even if they

were omitted in the caller’s argument list or marked absent by the

Stub.

AST address, AST parameter, and event parameters can be used to

signal the end of an asynchronous procedure call. When the remote

procedure returns, the caller’s RPC interface will set any event flags

and declare any AST routines that were in the argument list.

Obviously there can be many different combinations of parameter

type and calling mechanism. The RPC interface will detect an invalid

combination, such as an output parameter passed by value, and report

an error.

6 MESSAGE FORMATS

M RPC call or reply message consists of a message header

followed by zero or more ‘parameter definitions”. The me~sage

for a call message is shown below in figure 3.

header

I unused INum ParmsI Proc ID lCall Type

I Length of Reply Message I
I I Count I
I I I
i Callerfs Node Name I

Fiqure 3
Message H~ade; (Call Message)

The call message header contains the type of call (synchronous,

IMPLEMl?~?TINGREMOTE PROCEDURE CALLS WITH DECNET Page 10
.

asynchronous, or no-reply), the ID number of the procedure to call,

the number of parameter definitions in the message (including absent

parameters and function return values), the expected length of the

reply message, and the

uses the length of the

message. The caller’s

implement a node-level

procedures.

h

caller’s node name. The server’s RPC interface

reply message to allocate storage for the reply

node name can be used by the server to

‘access control list” for its remote

I unused lNum ParrnslProc ID Icall Typel

I status I

Figure 4
Message Header (Reply Message)

The first four bytes of the reply message (figure 4) have the

same function as the first four bytes of the call message. The last

four bytes of the reply message contain a status code which is used to

report errors detected by the server’s RPC interface.

The parameter definitions following the message header contain

the information necessary for the server’s RPC interface to

reconstruct the argument list and for the caller’s RPC interface to

unpack the output variables. The format of a parameter definition is

shown in figure 5.

I Length I Type I Mech. I
IAddress (if parmis output or modified)

I : I
.. Parameter Value ..

I :
I

Figure 5
Parameter Definition (One for Each Argument)

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 11

The first four bytes of the parameter definition contain the PDB entry

for the parameter. If the parameter is an output or modified

parameter, then the next four bytes of the parameter definition will

contain the address of the parameter (in the caller’s address space).

This parameter address can not, of course, be used by the server

process since the caller and server do not share a common address

space. It is present in the RPC message for “preservation”, since the

original arg~~mentlist may no longer exist when an asynchronous

procedure call returns.

The last part of the parameter definition is the parameter value.

Values of input or modified parameters are passed to the server in the

call message. Values of output or modified parameters are passed back

to the caller in the reply message. Values of event, AST parameter,

and AST address parameters are “stored” in the RPC message (passed

both ways) so that they will be available to the caller’s RPC

interface when the procedure returns.

7 ERROR

The

HANDLING

RPC interface must deal with errors from three ~ources: 1)

errors detected by the remote procedure, 2) errors detected by t+e RPC

interface, and 3) errors detected by DECnet. All errors are handled

in a uniform manner.

7.1 Errors Detected By The Remote Procedure

The RPC interface supports two mechanisms for reporting errors

which we call the “VMS error standard” and the “VAXELN error

atandardn. In the ‘VMS error standard”, a status code is returned as

the procedure’s function value. To support the VMS standard, the stub

routine need only create a PDB entry with the parameter type “status”

and mechanism “function return”. In the “VAXELN error standard”, one

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 12

of the procedure’s parameters is an optional status parameter. If the

optional status parameter is present, the routine will return a status

code in it. If the optional status parameter is absent, and the

procedure detects an error, the procedure will raise an exception.

If a parameter is

the RPC interface will

if it was omitted from

declared in the PDB to be a “status” parameter,

always pass it to the renwte procedure -- even

the argument list. When the remote procedure

returns, the caller’s RPC interface will examine the value of this

status parameter. If the status value is not a success code

(low-order bit set), and the parameter definition indicates that the

parameter is absent, the caller’s RPC interface will raise an

exception in the caller’s process. In this manner errors detected by

remote procedures are signaled in the calling process rather +han in

the server process.

7.2 Errors Detected By The RPC Interface

The RFC interface can detect certain ‘protocol” errors such as an

invalid procedure ID. Errord detected by the RPC interface are

handled in the same manner as errors detected by the remote procedure.

The RPC interfaCe will search the PDB for a status parameter. If a

status parameter is found, and it is present in the argument list, the

RPC interface will write a status code into the statu6 parameter and

return to the caller. If !Iostatus parameter is found, or if the

status parametel is absentl the RPC interface will raise an exception.

Anoth~r type of error detected by the RPC interface occurs when

the remote procedure terminates abnormally (e.g. divide by zero

errors? etc.)., To catch any such abnormal terminations, the server’s

RPC interface entablishec a condition handler prior to Galling the

remote procedure. If the remote procedure aborts, the condition

handler will store the reason for the abort in the status field of the

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 13
.

reply message header. The caller’s RPC interface can then handle the

abort like any other

7.3 Errors Detected

error.

By DECnet

We make the assumption that if DECnet reports a communications

error, then it has done everything it can, including retries, to get

the message delivered. We therefore will not retry the message

ourselves. We also assume that if DECnet succeeded in delivering the

message, then the message is correct, so we do not checksum our

messages either. Communications errors are treated the same way as

any

the

and

other error, except that when a communications error is detected

RPC interface will shut down the logical link between the caller

the server process.

8 CONSTRUCTING TIIESTUB ROUTINE—— —

M?,)yRPC systems will automatically generate stubs from

information supplied by the compiler or from special “procedure

definition files”. We did not feel, however, that the standard VAX

program development environment would adequately support automatic

stub generation.

Since we don’t generate stubs automatically, we have tried to

make the task of manually creating a stub as easy as possible. In

most cases, all that a stub routine has to do is supply the parameter

descriptor block (PDB), the procedure binding information, the type of

call (synchronous, asynchronous, or no-reply), and a call to

RPC-REMOTE-CALL to p,assthis information on to the RPC interface. The

architecture of the VAX procedure call allows the RPC i,lterfaceto

dirnctly acce6s the argument list passed to the stub routine. The

stub does not have to pass it explicitly.

IMPLEMENTING REMOTE PROCEDURE WLS WITH DECNET Page 14

Figure 6 illustrates what a stub routine for the RPC_ECHO

diagnostic routine might look like.

;: MODULE RPUCNCU2TUB [IDEIPP[’118EP06’~lJ
EXPORTnP~CNO:

:: IflCLUDW RPCDEF: [RPC ●ymbol G routlno definitions]
so

ai

II71 DOfin. tho paramtor damcriptor block for RPCECNO

H
01 CORST
11 NUILPARJU - 5;
21

(number of p~rmotorm]

vu
:; PDfJ: [RCADONLY]ARNA ~ ,1, .~~~j)~F ‘pcDE~odo]

[RP~SCNT, RP~NPUT,
:;

I
RP~SENT, RP~HPUT,

71
o), Ic.rvor]RP~ESCR ,

01
RP~NPUT , 0), in utitrinq]

RP~CSCR , RP~UTPUT, O) ?ou pu~trinq)
RPGLWNC , RP~TATUS ,

:;
4)!: function return)

I cod. for RPUCHO

BCOIN
RP&2CH0 :- RPLREMOT~L

CNO (rpc-echo]
END, (modulo]

(NODE 1- NoDE,
LXSTENEn

‘nod. name]
I- pRC JCSS, ●orvor name)

ROUTINUD I- 0, RPLECNO)
RCPLYJIAO :. R,-ayna, ●ynchrrmousa:::j)
P,UFIJAR14S 1- mHAm4s, number of
TIFUOUT 1, so, SO ●ocondm
P~CSULOCK I- PDB) !parm doaer ptio~~]

PMCA~.IST RPCCCNO,HAIB!PMLIB/LXBRARY

Figure 6
Sample Stub Routine

Note that the node and server name parameters have been forced
.,,,

“absentH in the PDB. These paramet~rs are only used for binding; the

RPC_ECHO routine itself does not reference them. AISO note that

RPC_ECHO conforms to the “VWS error standardM since a status code is

returnad as the function value.

9 PERFORMANCE

Figure 7 shows how our RPC system compares with DECnet

FtPC_ECHOwas used to send a block of data over a 10-megabit

alone,

Ethernet

line from a VAX780 running VMS, to a Micro-VAX II running VAXELN, and

back again. The round-trip times are compared with those of another

program that just uses DECnet to do the same thing,

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET

Protocol
Number of Bytes
Transferred RPC DECnet

O Byte6 15.63 ms 13.31 ms
512 Bytes 22.46 ms 18.39 ms
2048 Bytes 41.42 ms 35.03 ❑s
8192 Bytes 113.81 ms 95.69 ms

.—

Page 15

Figure 7
Message Echo Times

As can be seen from the table, the RPC interface adds about 20 percent

to the DECnet overhead.

10 CONCLUSIONS

The remote procedure call model works well when the communicating

processes are

however, when

capability is

in a client/server relationship. The model breaks down,

the procesces must interact as equals or when broadcast

required. Fortunately, the client/server relaticmhip

is commo,nin distributed systems
,

We feel that our system has

such as ours.

succeeded in merging the simplicity

of the RPC model

resulting system

DECnet does

with the power and flexibility of DECnet. The

has been both reliable and easy to use.

impose a certain amount of overhead, and our RPC

system adda to that overhead. So far this overhead has not been

intolerable. In some situations tho use of asynchronous procedure

calls has lessened the impact of the overhead.

11 ACKNOWLEMEMENTS

The authors would like to ackn~wledge the contributions of Stan

Brown, Gary Carr, and Jim Harrison for their help and guidance with

this project.

IMPLEMENTING
●

REMOTE PROCEDURE CALLS WITH DECNET

REFERENCES

Page 16

[1]

[2]

[3]

[4]

[5]

ALMES G.T., BLACK A.P., LAZOWSKA E.D., and NOE J.D., The Eden
System: A Technical Review (IEEE Trans. Software Eng.=-r
January ~9~4~-~

FJIRRELL A.D., and NELSON B.J., Im lementin Remote Procedure Calls
_l?_2+,~ary 1984] ‘—(ACM Trans. Computer Systems, Vo .

pp 39-59.

BLACK A.P., Su ortin Distributed Applications: Ex erience with
an~hEden, (Procee ~—ACM Symposium on Operat ng Sys ems

~ciples. Operating Systems Review, Vol. 19, No. 5, December
1985) pp 181-193.

ICHBIAH J.D., HELIARD J.C., ROUBINE 0., BARNES J.G.P.,
KRIEG-BRUECKNER B., and WICHMA.NNB.A. Rational for the Design of

‘he=wom:;c:::: %;?r(mp- –~ices, Vo

SWINEHART D.C., ZELLWEGER P.T., and HAGMANN R.B. The Structure of
Cedar (Proceedings, ACM SIGPLAN ’85 Sympcsium on =guage Issue=
~ogrmuning Environments. SIGPLAN Notices VO1. 20, No. 7, July
1985) Pp 230-244.

